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Abstract

The title problem arises in the terminal stage of a large class of industrial manufacturing processes as polymer extrusion, wire drawing,
drawing of plastic sheets, etc. It concerns the transient crossover to the state of rest of the fluid and heat flow which accompanies the
steady fabrication process, when the devices are switched off gradually (i.e. when the motion is slowed down and the surface temperature
approaches the ambient temperature continuously). The mechanical and thermal characteristics of such an unsteady process are inves-
tigated in the boundary layer approximation, assuming a linear variation of the steady stretching velocity with the longitudinal coordi-
nate x and an inverse linear law for its decrease with time during the gradual switch-off process. For the corresponding surface
temperature a general power-law variation is admitted. The paper presents the similarity analysis of several specific cases. The cases
of basic interest of a constant surface temperature Tw and of a constant surface heat flux qw are discussed in some detail. In the case
Tw = const. an exact solution is reported and the Prandtl number dependence of the corresponding surface heat flux is given for all
0 < Pr <1.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fluid and heat flow induced by continuous stretching
surfaces submerged in a quiescent fluid medium has many
engineering applications. Such applications are encoun-
tered in metal and polymer extrusion, continuous casting,
drawing of plastic films, wire drawing, etc. In the present
investigation we are interested in modeling the unsteady
two-dimensional boundary layer flow and heat transfer
induced by a surface after its steady linear speed is slowed
down gradually. Accordingly, only the relevant previous
works related to linearly stretching surfaces will be quoted
here; for a comprehensive list of general references on flow
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and heat transfer induced by moving surfaces the reader is
referred to Ali and Al-Yousef [1].

The steady two-dimensional flow and heat transfer was
analyzed by Crane [2] for linearly moving impermeable
sheet with uniform surface temperature. Gupta and Gupta
[3], Grubka and Bobba [4], Chen and Char [5], Ali [6,7] and
Magyari et al. [8] have studied the same case for permeable
surfaces and different surface temperature distributions.
Furthermore, mixed convection heat transfer from a line-
arly moving surface was reported by Ali and Al-Yoysef
[1] and by Chen [9]. A new approach which applies the Mer-
kin transformation method to the heat transfer problems of
steady boundary layer flows induced by stretching surfaces
has recently been reported by Magyari and Keller [10].

Similarity solutions of the unsteady Navier–Stokes
equations, of a thin liquid film on a stretching sheet were

mailto:magyari@hbt.arch.ethz.ch


Nomenclature

c wall temperature exponent (t-variation)
f similarity dependent variable
k thermal conductivity
L reference length
n wall temperature exponent (x-variation)
Pr Prandtl number, Pr = t/a
Re Reynolds number, Re = u0L/t
q heat flux
S dimensionless wall shear stress
t time variable
T temperature
u longitudinal velocity component
U dimensionless longitudinal velocity
v transversal velocity component
V dimensionless transversal velocity
x,y Cartesian coordinates
X,Y dimensionless Cartesian coordinates

Greek symbols

a thermal diffusivity
c unsteadiness parameter

K dimensionless constant, K = cL/u0

l dynamic viscosity
t kinematic viscosity, t = l/q
g similarity independent variable
q density
h dimensionless temperature
s dimensionless time, s = ct

sw wall shear stress
w dimensionless stream function

Subscripts

w wall condition
1 condition at infinity
0 reference value
x,y,s partial derivatives

Superscript

s steady state

M.E. Ali, E. Magyari / International Journal of Heat and Mass Transfer 50 (2007) 188–195 189
considered by Wang [11] and by Usha and Sridharan [12]
for the axisymmetric case. The same problem was extended
by Andersson et al. [13] to fluids obeying non-Newtonian
constitutive equations. The fluid velocity and skin friction
coefficient for an unsteady flow past a wall which starts
to move impulsively from the rest, have been calculated
by Pop and Na [14], using both the series and numerical
solution methods. Furthermore, the heat transfer charac-
teristics of the flow problem of Wang [11] was considered
by Andersson et al. [15]. The effect of the unsteadiness
parameter on heat transfer and flow field over a stretching
surface with and without heat generation was considered
by Elbashbeshy and Bazid [16,17], respectively.

2. Basic equations

The analysis starts with the continuity, momentum and
thermal energy equations

ux þ vy ¼ 0 ð1Þ
ut þ uux þ vuy ¼ tuyy ð2Þ
T t þ uT x þ vT y ¼ aT yy ð3Þ

The subscripts denote partial derivatives with respect to
x, y, t.

We assume that for t < 0 the fluid and heat flow are
steady, i.e.

u ¼ usðx; yÞ; v ¼ vsðx; yÞ; T ¼ T sðx; yÞ ð4Þ
where ðus; vs; T sÞ is the steady state solution of Eqs. (1)–(3)
satisfying the boundary conditions
us � us
wðxÞ ¼ u0

x
L ; vs � vs

wðxÞ;
T s � T s

wðxÞ ¼ T1 þ T 0
x
L

� �n

)
on y ¼ 0 ð5Þ

us ! 0; T s ! T1 as y !1 ð6Þ
The unsteady fluid and heat flow starts at t = 0 with the
initial conditions
uðx; y; tÞ ¼ usðx; yÞ; vðx; y; tÞ ¼ vsðx; yÞ;
T ðx; y; tÞ ¼ T sðx; yÞ at t ¼ 0 ð7Þ
such that the unsteady state evolves for t > 0 according to
the full balance equations (1)–(3) under the boundary
conditions

u � uwðx; tÞ ¼ us
wðxÞ

1þct ; v � vwðx; tÞ;
T � T wðx; tÞ ¼ T1 þ T 0

ð1þctÞc ðxL Þ
n

)
on y ¼ 0 ð8Þ

u! 0; T ! T1 as y !1 ð9Þ

In the above equations the constants u0, T0, T1 and c are
positive, c and n are arbitrary, and L is some reference
length which will be specified below.
3. Non-dimensionalization

The present unsteady stretching problem possesses a
characteristic velocity scale u0 and a characteristic time
scale c�1. We non-dimensionalize the mass and momentum
balance equations according to
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X ¼ x
L
; Y ¼ y

L
; s ¼ ct

UðX ; Y ; sÞ ¼ uðx; y; tÞ
u0

; V ðX ; Y ; sÞ ¼ vðx; y; tÞ
u0

ð10Þ

and obtain

UX þ V Y ¼ 0 ð11Þ

K � U s þ UU X þ VU Y ¼
1

Re
U YY ð12Þ

where

Re ¼ u0L
t

ð13Þ

is the Reynolds number and

K ¼ cL
u0

ð14Þ

is a further positive dimensionless constant.
We now introduce the dimensionless stream function w

by the definition

U ¼ wY ; V ¼ �wX ð15Þ

Thus we are left with the single equation for the fluid flow,

K � wsY þ wY wXY � wX wYY ¼
1

Re
wYYY ð16Þ

The thermal energy equation becomes

K � T s þ wY T X � wX T Y ¼
1

Pr � Re
T YY ð17Þ

where Pr = t/a is the Prandtl number.

4. Similarity transformation

We introduce the similarity transformation

w ¼ Xffiffiffiffiffiffi
Re
p ð1þ sÞ�1=2f ðgÞ

g ¼
ffiffiffiffiffiffi
Re
p

� ð1þ sÞ�1=2 � Y
T ¼ T1 þ T 0X nð1þ sÞ�chðgÞ

ð18Þ

where T0 is a (positive or negative; heating or cooling)
reference temperature.

The components of the dimensionless velocity field
result as

UðX ; Y ; sÞ ¼ X ð1þ sÞ�1f 0ðgÞ

V ðX ; Y ; sÞ ¼ � 1ffiffiffiffiffiffi
Re
p ð1þ sÞ�1=2f ðgÞ

ð19Þ

Their dimensional counterparts are given by

uðx; y; tÞ ¼ u0X ð1þ sÞ�1f 0ðgÞ

vðx; y; tÞ ¼ � u0ffiffiffiffiffiffi
Re
p ð1þ sÞ�1=2f ðgÞ ð20Þ
For the similar stream function f and the similar tempera-
ture h the following equation emerge:

f 000 þ ff 00 � f 02 þ K � f 0 þ 1

2
gf 00

� �
¼ 0 ð21Þ

h00

Pr
þ f h0 � nf 0hþ K � chþ 1

2
gh0

� �
¼ 0 ð22Þ

The dimensional boundary conditions (8) and (9) become

u � uwðx; tÞ ¼ u0X ð1þ sÞ�1f 0ð0Þ
v � vwðtÞ ¼ �

u0ffiffiffiffiffiffi
Re
p ð1þ sÞ�1=2f ð0Þ

9=
; ðon y ¼ 0Þ ð23Þ

T � T wðx; tÞ ¼ T1 þ T 0X nð1þ sÞ�chð0Þ ðon y ¼ 0Þ ð24Þ

and together with (9) imply for the dimensionless functions
f and h the conditions

f ð0Þ ¼ fw; f 0ð0Þ ¼ 1; f 0ð1Þ ¼ 0 ð25Þ
hð0Þ ¼ 1; hð1Þ ¼ 0 ð26Þ

In addition to the boundary conditions (25) and (26) the
requirements

f 0ðgÞP 0 for all g P 0 ð27Þ
and

hðgÞP 0 for all g P 0 ð28Þ
must also be satisfied. The former condition aims to avoid
the flow reversal (where the boundary layer approximation
breaks down) and the latter one excludes the violation of
the first principle of thermodynamics.

5. General features of the basic boundary value problems

5.1. Scaling behavior

Our basic boundary value problem is specified by Eqs.
(21), (22) and (25)–(28). It splits in an independent flow
boundary value problem (21), (25) and (27) and in the
forced thermal convection problem (22), (26) and (28),
respectively.

As mentioned in Section 3, the present unsteady stretch-
ing problem possesses a natural velocity scale u0 and a nat-
ural time scale c�1. These specify in turn also the natural
length scale Lnat = u0 �c�1. The flow may obviously be
observed also on any arbitrarily chosen length scale L.
The parameter K defined by Eq. (14) represents precisely
the ratio of such an arbitrary length scale L and the natural
one Lnat. As a consequence we may choose in the above
equations K = 1 without any lost of (physical) generality
since K 6¼ 1 corresponds to one and the same physical flow
observed on other length scales than the natural one
Lnat = u0 �c�1. In this sense the steady problem (c = 0)
which corresponds in Eqs. (21) and (22) to the value
K = 0 can also be interpreted as the unsteady problem
(c 6¼ 0) observed on the length scale L = 0. When not spec-
ified otherwise, we chose hereafter L = Lnat = u0 �c�1, i.e.
K = 1.
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In addition to the velocity and temperature fields, fur-
ther quantities of engineering interest are the wall shear
stress sw(x,t) = qtou/oyjy=0 and wall heat flux qw(x,t) =
�koT/oyjy=0 which in the present case become

swðx; tÞ ¼
qu2

0ffiffiffiffiffiffi
Re
p X ð1þ sÞ�3=2f 00ð0Þ ð29Þ

qwðx; tÞ ¼ �
kT 0

L

ffiffiffiffiffiffi
Re
p

� X nð1þ sÞ�c�1=2h0ð0Þ ð30Þ
5.2. Integral relationships

Assuming a sufficiently rapid decay of f 0(g) and h(g) as
well as a finite value f(1) = f1 of the similar entrainment
velocity, one easily obtains the integral relationships

f 00ð0Þ ¼ 1

2
ðf1 � 3f wÞ � 2

Z 1

0

f 02dg ð31Þ

h0ð0Þ ¼ �Pr fw þ ðnþ 1Þ
Z 1

0

f 0hdg� c� 1

2

� �Z 1

0

hdg

� �
ð32Þ

Eq. (31) yields the inequality

f 00ð0Þ � SðfwÞ <
1

2
ðf1 � 3f wÞ ð33Þ
0.2

0.4

0.6

0.8

1

0wf =

(  )f η′
5.3. The Reynolds analogy

If f = f(g) solves the flow problem for a specified value of
fw, then

h ¼ f 0ðgÞ ð34Þ
solves the temperature problem for

Pr ¼ 1; n ¼ 1; c ¼ 1 ð35Þ
This is the Reynolds analogy applied to the present prob-
lem. Hence, in this case we have

h0ð0Þ ¼ f 00ð0Þ � SðfwÞ ð36Þ
0 2 4 6 8 10
0

η

Fig. 2. Dimensionless velocity profiles f 0(g) associated with fw = 0 and five
different values of S(0) in the interval (37), S(0) = �0.3, �0.4, �0.5, �0.6
and �0.651216 (from top to bottom) where no backflow exists.
6. Solutions of the flow problem

The flow problem (21) and (25) can easily be solved
numerically, e.g. with the aid of the shooting method. In
Fig. 1 the plots of f(g) and f 0(g) of a possible solution for
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1

η

( )f η

( )f η′

Fig. 1. Plots of f(g) and f 0(g) for fw = 0. In this case f(1) = 0.969014 and
f 00(0) � S(0) = �0.651216.
an impermeable surface (fw = 0) are shown. It is found that
S(0) = �0.651216 is only the smallest value of S(0) for
which the flow problem for an impermeable surface admits
solution satisfying the additional condition (27). In fact,
for fw = 0 it admits such a solution for any value of
f00(0) � S(0) in the range

Sminð0Þ ¼ �0:651216 6 Sð0Þ < 0 ð37Þ
In other words, for fw = 0 the flow problem admits a family
of multiple solutions: one solution for every value of S(0) in
the interval (37). This feature of the problem (21) and (25) is
illustrated in Fig. 2. It is interesting to notice that the
dimensionless entrainment velocity f1 is finite only for the
solution corresponding to S(0) = Smin(0) = �0.651216 and
it becomes infinite for all the other members of the family
of solutions with Smin(0) < S(0) < 0. This circumstance is
illustrated in Fig. 3. As a consequence, only the (rapidly
decaying) velocity profile associated with S(0) = Smin(0) =
�0.651216 corresponds to a physical solution of our flow
problem for fw = 0, the other ones with Smin(0) < S(0) < 0
are non-physical. Furthermore, for S(0) > 0 no solutions ex-
ist and for S(0) < Smin(0) the solutions of the problem (21)
and (25) violate the condition (27), i.e. ranges of negative val-
ues of f 0(g) exist for S(0) < Smin(0). This property is illus-
trated in Fig. 4. Concerning the asymptotic behavior of the
similar velocity profiles plotted in Figs. 1–4, it is worth men-
tioning here that in addition to the boundary condition
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min 0.651216,  0.969014S S f∞= = − =

Fig. 3. Profiles of f(g) associated with fw = 0 and five different values of
S(0) in the interval (37) where no backflow exists.
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Fig. 4. Dimensionless velocity profiles f 0(g) associated with fw = 0 and five
different values of S(0) in the range S(0) < Smin(0) = �0.651216, namely
S(0) = �0.75, �0.85, �1.3 and �1.5 (from top to bottom, as indicated by
the arrow). These solutions violate the condition (27), i.e. ranges of
negative f 0(g) exist.
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Fig. 6. Solutions f 0(g) of the flow problem corresponding to three different
points of the border curve shown in Fig. 5. The coordinates of these points
in the parameter plane (S, fw) are: (S, fw) = (�1.3551,+1), (�0.6512,0),
and (�0.2235,�1), respectively.
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Fig. 7. Solutions f(g) of the flow problem corresponding to three different
points of the border curve shown in Fig. 5. The coordinates of these points
in the parameter plane (S, fw) are the same as in Fig. 6.
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f 0(1) = 0, the physical solutions f 0(g) must also satisfy the
condition f0(1) = 0 of a smooth asymptotic decay.

When the surface is permeable and a lateral suction
(fw > 0) or injection (fw < 0) of the fluid is applied, the
boundary value problem admits one solution without flow
reversal for every point of coordinate (S, fw) belonging to
the second or the and third quadrant of the parameter
plane (S, fw) assuming that, for a specified value of the
suction/injection parameter fw, the point lies either (i) on
the border curve S = Smin(fw), or (ii) above it, i.e.

SminðfwÞ 6 S < 0 ð38Þ
This domain of existence of the solutions without flow
reversal is represented by the grey region of the parameter
plane shown in Fig. 5. In Figs. 6 and 7 the solutions f 0(g)
and f(g) corresponding to three different points of the bor-
der curve are shown. Similarly to the case fw = 0 illustrated
in Fig. 3, the dimensionless entrainment velocity f1 is finite
also for fw 6¼ 0 only for the solutions corresponding to the
points of the border curve S = Smin(fw) and it becomes infi-
nite for all the other points of the existence domain shown
in Fig. 5.

We may conclude, therefore, that only the (rapidly
decaying) velocity profiles associated with the points of
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Fig. 5. Existence domain of solutions of the flow boundary value problem
(21) and (25) satisfying the additional condition (27) (the grey region of the
parameter plane (S, fw)).
the border curve S = Smin(fw) correspond to physical solu-
tions of our flow boundary value problem (21) and (25).
They also satisfy the additional condition (27) of non-exis-
tence of regions with flow reversal.
7. Solutions of the temperature problem

We investigate in this section different physically rele-
vant cases of the temperature boundary value problem
(22) and (26) for K = 1 along with the additional condition
(28).

The Reynolds-analogy discussed in Section 5.3 yields
already a class of such solutions in terms of solutions of
the flow problem presented in Section 6.

7.1. The special case n = �1, c = +1/2

In this case the integral relationship (32) yields for the
dimensionless surface temperature gradient the explicit
result

h0ð0Þ ¼ �Prfw ðn ¼ �1; c ¼ 1=2Þ ð39Þ

Hence, for a given value of the suction/injection parameter
fw the wall heat flux scales linearly with Pr.
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Fig. 8. Plots of h(g) given by Eq. (41) for fw = 0, f 00(0) = Smin(0) =
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Fig. 9. Plots of h(g) for Tw = const., fw = 0, f 00(0) = Smin(0) = �0.651216
and the values Pr = 0.7, 2 and 6 of the Prandtl number. The correspond-
ing values of the wall temperature gradient are h0(0) = �0.714448,
�1.279805 and �2.294967, respectively.
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The thermal boundary value problem (22) and (26) can
now be transcribed into the form

d

dg
h0

Pr
þ f þ 1

2
g

� �
h

� �
¼ 0

hð0Þ ¼ 1; hð1Þ ¼ 0

ð40Þ

The solution of (40) can be obtained by quadratures and
reads

hðgÞ ¼ e�Pr�F ðgÞ ð41Þ
where the notation

F ðgÞ � 1

4
g2 þ

Z g

0

f ð~gÞd~g ¼
Z g

0

1

2
~gþ f ð~gÞ

� �
d~g ð42Þ

has been used.
The dimensional temperature field and the wall heat flux

are given in this case by

T ¼ T1 þ T 0

L
x

1ffiffiffiffiffiffiffiffiffiffiffi
1þ s
p hðgÞ ð43Þ

and

qwðx; tÞ ¼
kT 0

L
fw �

ffiffiffiffiffiffi
Re
p

� L
x

Pr
1þ s

ð44Þ

respectively, where as explained in Section 5.1, L = Lnat =
u0 �c�1.

In the case fw = 0, Eq. (43) describes the temperature
field over an insulated impermeable surface. Indeed,
according to Eq. (44) the heat flux is vanishing for fw = 0
in every point of the surface except for the leading edge sin-
gularity at x = 0. The heat responsible for the temperature
field is released by this singularity.

In Fig. 8 the temperature profiles (41) are shown for
three different values of the Prandtl number and the flow
solution corresponding to fw = 0 and f00(0) = Smin(0) =
�0.651216 (see Section 6).

7.2. Prescribed constant wall temperature: Tw = const.

This is the important case of an isothermal stretching
surface corresponding to the temperature exponents

n ¼ 0; c ¼ 0 ð45Þ
which yields the temperature boundary value problem

h00

Pr
þ f þ 1

2
g

� �
h0 ¼ 0

hð0Þ ¼ 1; hð1Þ ¼ 0

ð46Þ

The corresponding dimensional temperature filed and wall
heat flux are

T ¼ T1 þ ðT w � T1ÞhðgÞ ð47Þ
and

qw ¼ �
k
L
ðT w � T1Þ

ffiffiffiffiffiffiffiffiffiffiffi
Re

1þ s

r
� h0ð0Þ ð48Þ

respectively. The quantity of engineering interest in this
case is the similar wall temperature gradient h0(0) as a
function of Pr.

The solution of the boundary value problem (46) can
again be given by quadratures,

hðgÞ ¼ 1þ h0ð0Þ �
Z g

0

e�Pr�F ð�gÞd�g ð49Þ

where F(g) is given by Eq. (42) and the similar wall temper-
ature gradient h0(0) by equation

h0ð0Þ ¼ �
Z 1

0

e�Pr�F ð�gÞd�g

� ��1

ð50Þ

In Fig. 9 the temperature profiles (49) are shown for three
different values of the Prandtl number and the flow
solution corresponding to fw = 0 and f 00(0) = Smin(0) =
�0.651216 (see Section 6). The dependence of the similar
wall temperature gradient on the Prandtl number is shown
in Fig. 10a where �h0(0) has been plotted versus Pr accord-
ing to Eq. (50) for fw = 0.

With the aid of Eq. (50) can be shown that �h0(0) scales
(for fw = 0 and f 00(0) = Smin(0) = �0.651216) with

ffiffiffiffiffi
Pr
p

both for small and large values of the Pr, namely

h0ð0Þ ¼ �0:60264 �
ffiffiffiffiffi
Pr
p

as Pr! 0

�0:96782 �
ffiffiffiffiffi
Pr
p

as Pr!1

(
ðfw ¼ 0; S ¼ Sminð0ÞÞ

ð51Þ
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Fig. 10a. Plot of �h0(0) as a function of Pr in the case Tw = const. for
fw = 0, and S = Smin(0) = �0.651216.
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We mention that this unusual correlation (the low-and
high-Pr asymptotics exhibit the same Pr-dependence),
although highly accurate, is an approximate scaling rela-
tionship since the numerical coefficient of

ffiffiffiffiffi
Pr
p

in Eq. (51)
also shows a slight dependence on Pr. However, the small
increase from 0.60264 to 0.96782 takes place while the Pra-
ndtl number varies over 6 orders of magnitude.

Compared with the case (51) of the impermeable surface
(fw = 0), in the permeable case the lateral suction (fw > 0)
or injection (fw < 0) of the fluid has an essential effect on
the Prandtl number dependence of the surface temperature
gradient h0(0). This effect is illustrated in Figs. 10b and 10c
for (fw = +1, S = Smin(+1) = �1.3551), (fw = +1.5, S =
Smin(+1.5) = �1.77673), (fw = �1, S = Smin(�1) =
�0.22351) and (fw = �1.5, S = Smin(�1.5) = �0.113072),
respectively.

7.3. Prescribed constant wall heat flux: qw = const.

According to Eq. (30) a constant prescribed value of the
wall heat flux corresponds to the temperature exponents

n ¼ 0; c ¼ �1=2 ð52Þ
The quantity of engineering interest in this case is the sim-
ilar wall temperature h(0) as a function of Pr while the
value of the similar wall temperature gradient h0(0) may
be specified arbitrarily, the usual choice being h0(0) = �1.
Thus the corresponding thermal boundary value problem
reads

h00

Pr
þ f þ 1

2
g

� �
h0 � 1

2
h ¼ 0

h0ð0Þ ¼ 1; hð1Þ ¼ 0

ð53Þ

The corresponding dimensional temperature field is

T ¼ T1 þ
Lqw

k

ffiffiffiffiffiffiffiffiffiffiffi
1þ s

Re

r
� hðgÞ ð54Þ

The surface temperature becomes in this case

T w ¼ T1 þ
Lqw

k

ffiffiffiffiffiffiffiffiffiffiffi
1þ s

Re

r
� hð0Þ ð55Þ

In Fig. 11 the temperature profiles h(g) as solutions of the
boundary value problem (53) are shown for fw = 0,
f 00(0) = Smin(0) = �0.651216 and three different values of
the Prandtl number.

8. Summary and conclusions

The unsteady heat and fluid flow which occurs during
the continuous switch-off of some industrial manufacturing
processes, as e.g. the drawing of plastic sheets, has been
investigated in this paper on a model system. A linear
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variation of the steady stretching velocity with the longitu-
dinal coordinate x and an inverse linear law for its decrease
with time during the gradual switch-off process have been
assumed. For the corresponding surface temperature a gen-
eral power-law variation is admitted. A similarity analysis
of several special cases has been presented.

The main results of the paper can be summarized as
follows:

1. For any specified value of the suction injection parame-
ter fw in the range �1 < fw < +1 the flow problem
admits solutions without backflow regions only if the
surface shear stress f 00(0) � S(fw) equals or exceeds a
minimum value Smin(fw). These values specify in the
parameter plane (fw,S) a ‘‘border curve” which is shown
in Fig. 5. The physical solutions of the flow problem
associated with finite values of the entrainment velocity
correspond to the points of the border curve. From each
point of this curve there bifurcates a family of further
solutions characterized by slowly decaying velocity pro-
files and infinite entrainment velocities.

2. For constant surface temperature Tw, an exact solution
has been given for the similar temperature which in turn
allows to calculate the corresponding surface heat flux
for any value of the Prandtl number (see Fig. 10a).
There has been found that, as expected, the lateral suc-
tion or injection of the fluid exerts a strong effect on the
surface heat transfer (see Figs. 10b and 10c).

3. For constant surface heat flux qw, numerical solutions
have been presented for the similar temperature profiles
h(g) in the case of an impermeable surface (fw = 0). A
comprehensive study of the effect of suction and injec-
tion in this case is still open. The investigation of the
Prandtl number-dependence of the similar surface tem-
perature h(0) for qw = const. is a further research
opportunity.

4. An analysis of the involved physical scales has shown
(see Section 5.1) that the parameter K which occurs in
the basic equations (21) and (22) of the problem, may
be chosen without any lost of physical generality equal
to the unity, since K 6¼ 1 corresponds to one and the
same physical flow observed on different length scales.
In other words, a parameter study of the basic boundary
value problem with respect to K (as it is encountered in
several earlier publications) yields no new physics, but it
is only of a mathematical interest.
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